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Abstract

It is well known that the compression sti�ness of bonded layers increases due to the restricted lateral expansion if

Poisson's ratio is near 0.5. While analytical solutions have previously been obtained for circular, in®nite-strip and

square shapes, this paper presents the ®rst analytical attempt for bonded rectangular layers. On the basis of two ki-

nematic assumptions and by means of variable transformation, the governing equations are derived. The double series

approach provides a direct means of computation with second-order convergence. The solutions agree well with the

published results for special cases of square layers and in®nite strips, and with ®nite element results for rectangular

layers. Besides illustrating the importance of including the compressibility e�ect, the numerical study shows that the

e�ect of length-to-width ratio is signi®cant on the e�ective compression modulus of rectangular pads. Ó 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Elastomeric pads and bearings are commonly used for the purpose of vibration isolation. Usually made
of natural or synthetic rubbers, they could be used at the vibration ``source'' such as machineries to reduce
the vibrations transmitted to the supporting structures. Alternatively, they could be installed at the ``target''
e.g. to protect sensitive instruments in a noisy factory environment using thin elastomeric pads. For the
same reason, it is possible to use rubber bearings at the base of buildings and structures alike to reduce
tra�c-induced vibration. The ®rst building to be isolated from low frequency ground-borne tra�c vibra-
tion by means of natural rubber bearings was an apartment built in London in 1966 (Kelly, 1997). In recent
years, the concept of using base isolation bearings for earthquake resistant design of buildings and bridges
has been increasingly accepted. The aim is to reduce the forces transmitted to the structures in the event of
earthquakes. Such bearings typically consist of several thin rubber layers sandwiched between and bonded
to steel reinforcing plates.
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Under vertical compression, the expansion of bonded rubber layers is con®ned in only lateral directions.
As rubber is highly incompressible (PoissonÕs ratio m close to 0.5), the restricted expansion results in higher
compression modulus than in the case of unbonded rubber layers. The e�ective compression modulus can
be de®ned as

Ec � P
Aet

; �1�

where A is the area of the pad, t the thickness, and et the average thickness strain (or relative change in
thickness) under a compression load P. The value of Ec is larger than YoungÕs modulus (E) of the material
by even one or two orders of magnitude, depending upon the shape factor and Poisson's ratio. The shape
factor is de®ned as the ratio of the loaded area to the stress-free area (where lateral expansion takes place).
Earlier works assumed strict incompressibility, i.e. m is exactly equal to 0.5. On this basis, Gent and Lindley
(1959) derived the e�ective compression modulus for pads of two types of geometry, i.e. circular pads and
in®nitely long pads. In addition, the following assumptions were made (two on kinematics and one on
stress):

(A) horizontal plane sections remain plane,
(B) vertical lines become parabolic after deformation under compression loading (parabolic ``bulging''
shape),
(C) normal stress components in all the three orthogonal directions are the same and equal to the mean
pressure.
This approximate treatment was further extended by Lindley (1966) and Gent and Meinecke (1970) to

pads of other shapes including ellipse, square, rectangle and equilateral triangle. Nevertheless, for pads of
high shape factor, the assumption of strict incompressibility for material overestimates the e�ective com-
pression modulus considerably. This is not desirable as it leads to the over-estimation of the buckling load
and resonant frequency. Even though the numerical value of PoissonÕs ratio may be very close to 0.5, the
e�ect of material compressibility cannot be neglected. In an energy approach, Lindley (1979) derived the
compression moduli for elastic blocks bonded to rigid end plates for plane strain (in®nitely long strip) and
axisymmetric (circular) cases. In addition to assumptions (A) and (B) mentioned above, two assumptions
were made regarding the magnitudes of normal strains and the bulk strain. This approach was found to be
applicable for materials with PoissonÕs ratio between 0.125 and 0.49983 and the width-to-thickness ratio
between 0.25 and 128. In a similar investigation, Moghe and Ne� (1971) derived the e�ective compression
modulus for constrained elastic cylinders in terms of in®nite series of orthogonal Bessel and trigonometric
functions.

Accounting for the e�ect of compressibility, Chalhoub and Kelly (1990) formulated a theoretical ap-
proach to derive the compression sti�ness of circular layers used in rubber isolation bearings. Based on
assumptions (A)±(C), the governing equations for the ``hydrostatic pressure'' in a bonded rubber layer were
presented. Known as the ``pressure'' solution, the approach was extended to treat in®nite strips (Chalhoub
and Kelly, 1991), hollow circular pads (Constantinou et al., 1992) and square pads (Kelly, 1997).

In the pressure solution approach, it is necessary to assume that the state of stress at any point in the
material behaves like ¯uid, and hence the governing equation can be expressed in terms of the hydrostatic
pressure term. This is a rather ad hoc assumption. Without making this assumption, Koh and Kelly (1989)
proposed two direct solutions to compute the e�ective compression modulus of bonded square elastomeric
layers. The ®rst direct solution is based on the two kinematic assumptions (A) and (B). It is noteworthy that
the solution method takes advantage of the so-called square symmetry (about diagonals). This solution is
almost indistinguishable numerically from the second direct solution that further eliminates kinematic
assumption (B), thereby con®rming that the assumption of parabolic bulging shape is a realistic one. The
error due to the remaining assumption (A) is also shown to be negligible for typical shape factors. Both
direct solutions recover the e�ective compression modulus to YoungÕs modulus when Poisson's ratio
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approaches zero. In contrast, the pressure solution fails to do so and is thus applicable to only a limited
range of PoissonÕs ratio. In a similar attempt without assuming ¯uid-like stress state, Tsai and Lee (1998)
recently obtained closed form solutions for bonded layers of in®nite-strip, circular and square shapes. For
square layers, square symmetry is made use of as in the solution presented by Koh and Kelly (1989). The
solution also involves an in®nite series, though in a more complicated form requiring the solution of a
matrix equation. The rapid convergence of the series solution gives good accuracy with the use of only one
term. The numerical results compare well with the results given by Koh and Kelly (1989).

Rectangular pads are not uncommon for isolation support of machines and railway tracks. Nevertheless,
no analytical solution thus far has been presented taking into account the e�ect of compressibility. This is in
fact the main reason why solutions have been obtained for in®nite-strip layers as an approximation for long
rectangular layers. In this paper, the approach similar to the ®rst direct solution of Koh and Kelly (1989) is
adopted, but without the bene®t of square symmetry.

2. Theoretical formulation

Consider a rectangular layer bonded between two rigid plates and subjected to a vertical compression
load, P. The layer is of thickness t, width 2a and length 2b. The material is assumed to be linearly elastic,
homogenous and isotropic. A Cartesian coordinate system (x1, x2, x3) is established with the origin at the
center of the mid-plane as shown in Fig. 1.

Let ui denote the displacement component in the xi direction. The top and bottom surfaces of the layer
are perfectly bonded to rigid plates so that u1 � u2 � 0 at x3 � �t=2. Following the usual de®nition, the
shape factor for a bonded rectangular layer is

S � ab
t�a� b� : �2�

Kinematic assumptions (A) and (B), which are found to be reasonable in the study for square layers (Koh
and Kelly 1989), are adopted here. Accordingly, the displacements can be expressed as follows:

ui�x1; x2; x3� � �ui�x1; x2��1ÿ 4x2
3=t2� for i � 1; 2; �3�

u3�x1; x2; x3� � �u3�x3�: �4�
Using the usual tensor notations for stress (rij) and strain (eij), the constitutive equation and strain±
displacement relation are, respectively,

Fig. 1. Geometry and co-ordinate system for a rectangular layer bonded between two rigid plates.
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rij � kekkdij � 2leij; �5�

eij � 1
2
�ui;j � uj;i�; �6�

where dij is the Kronecker delta function, l is the same as the shear modulus G, and k � mE=� 1� m� ��
1ÿ 2m� ��. It can be shown that

r11 � k�
h
� 2G��u1;1 � k�u2;2

i
1
ÿ ÿ 4x2

3=t2
�� k�u3;3; �7�

r22 � k�
h
� 2G��u2;2 � k�u1;1

i
1
ÿ ÿ 4x2

3=t2
�� k�u3;3; �8�

r33 � k� � 2G��u3;3 � k �u1;1

�
� �u2;2

�
1
ÿ ÿ 4x2

3=t2
�
; �9�

r13 � r31 � ÿ8G�u1x3=t2; �10�

r23 � r32 � ÿ8G�u2x3=t2; �11�

r12 � G �u1;2

�
� �u2;1

�
1
ÿ ÿ 4x2

3=t2
�
: �12�

The compression load P is obtained by integrating r33 over the mid-plane, leading to

P � ÿ k� � 2G�A�u3;3 ÿ k 1

�
ÿ 4

x2
3

t2

�Z
A
��u1;1 � �u2;2�dA: �13�

Integrating the above equation over the thickness and substituting the result into Eq. (1) results in

Ec � k� � 2G� 1

24 ÿ 2

3

�k
Aet

Z
A
��u1;1 � �u2;2�dA

35; �14�

where �k � k= k� 2G� � � m=�1ÿ m�. To evaluate u1,1 and u2,2 as required above, the following equilibrium
equation is invoked:

rij;j � 0: �15�
Substituting Eqs. (10) and (12) into the above equation with i� 1, di�erentiating the resulting equation with
respect to x1 and ®nally integrating through the thickness leads to

r11;11 � 8G�u1;1

t2
ÿ 2

3
G��u1;122 � �u2;211�: �16�

An alternative expression can be obtained by di�erentiating Eq. (7) twice with respect to x1 and integrating
through the thickness

r11;11 � 2

3
k�

h
� 2G��u1;111 � k�u2;211

i
: �17�

Equating the above two expressions and dividing by (k� 2G) gives

12 �G�u1;1=t2 � �u1;111 � ��k� �G��u2;211 � �G�u1;122; �18�
where �G � G=�k� 2G� � �1ÿ 2m�=2=�1ÿ m�. Similarly, for i� 2 in Eq. (15),

12 �G�u2;2=t2 � �u2;222 � ��k� �G��u1;122 � �G�u2;211: �19�
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Eqs. (18) and (19) provide the governing equations for solving �u1;1 and �u2;2. The corresponding
boundary conditions are derived by imposing stress-free condition along the four lateral sides:

r11 �x1 � �a; x2� � 0 �20�

r22 �x1; x2 � �b� � 0: �21�
Substituting Eqs. (7) and (8) into Eqs. (20) and (21), respectively, and integrating both resulting equations
through the thickness results in

�u1;1 � �k�u2;2 � 3
2
�ket at x1 � �a; �22�

�u2;2 � �k�u1;1 � 3
2
�ket at x2 � �b: �23�

The above boundary conditions can be made simpler by using the following ``QR-transformation'' (Koh
and Kelly, 1989):

Q x1; x2� � � �u1;1 x1; x2� � � k�u2;2 x1; x2� � ÿ 3
2
�ket; �24�

R x1; x2� � � �u2;2 x1; x2� � � �k�u1;1 x1; x2� � ÿ 3
2
�ket: �25�

Hence,

Q�x1 � �a; x2� � 0; �26�

R�x1; x2 � �b� � 0: �27�
Solving simultaneously Eqs. (24) and (25) gives the inverse transformation:

�u1;1 � Qÿ �kR

1ÿ �k2
� 3

2

�k

1� �k
et; �28�

�u2;2 � Rÿ �kQ

1ÿ �k2
� 3

2

�k

1� �k
et: �29�

Eqs. (18) and (19) thus become

ab c3Q;11

�
� �GQ;22 � �GR;11 ÿ �k �GR;22

�
� c1�Qÿ �kR� � c2et; �30�

ab c3R;22

�
� �GR;11 � �GQ22 ÿ �k �GQ;11

�
� c1�Rÿ �kQ� � c2et; �31�

where c1 � 12 �G�ab=t2�, c2 � �3=2�c1
�k�1ÿ �k� and c3 � 1ÿ �k��k� �G�.

3. Series solution

As shown for square layers (Koh and Kelly, 1989; Tsai and Lee, 1998), the series approach provides a
closed form solution to the problem and its rapid numerical convergence is an advantage. Square sym-
metry, e.g. �u1�x1; x2� � �u2�x2; x1�, is not valid here for rectangular layers. Thus, it is necessary to use double
Fourier series instead of a single series.

By virtue of symmetry about the x1 and x2 axes, it follows that �u1;1 and �u2;2 are symmetric functions of
both x1 and x2. Hence, only cosine functions are needed in the double series expressions for Q and R, as
follows:
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Q x1; x2� � �
X1
m�1

X1
n�1

qmn cos�amx1=a� cos�bnx2=b�; �32�

R x1; x2� � �
X1
m�1

X1
n�1

rmn cos�amx1=a� cos�bnx2=b�; �33�

where am � mÿ 0:5� �p and bn � nÿ 0:5� �p. Eqs. (26) and (27), which result from imposing the boundary
conditions as given in Eqs. (20) and (21), are satis®ed by the above construction. Note that Eq. (32) also
means Q�x1; x2 � �b� � 0. Nevertheless, this does not necessarily imply that r11�x1; x2 � �b� � 0 since the
construction of Q from Eq. (20) involves integration through the thickness. An analogy is that
f �x� � 0) R

f �x�dx � 0, but the converse may not be necessarily true. In the context of the present for-
mulation and assumptions, the only implication is that the integral of r11 at x2 � �b through the thickness
is zero; similarly for r22 at x1 � �a.

The coe�cients qmn and rmn are derived by (i) di�erentiating the above two equations twice with respect
to x1 and x2, (ii) substituting into Eqs. (30) and (31), and (iii) applying the orthogonality properties of
cosine functions. After some simpli®cation, the following expressions are obtained:

Amnqmn � Bmnrmn � Emn; �34�

Cmnrmn � Dmnqmn � Emn; �35�
where

Amn � ÿc3a
2
mXÿ �Gb2

nX
ÿ1 ÿ c1; Bmn � ÿ �Ga2

mX� �k �Gb2
nX
ÿ1 � c1

�k;

Cmn � ÿc3b
2
nX
ÿ1 ÿ �Ga2

mXÿ c1; Dmn � ÿ �Gb2
nX
ÿ1 � �k �Ga2

mX� c1
�k;

Emn � 4�ÿ1�m�nc2et

ambn

and X � b=a is the ratio of length to width, herein called the aspect ratio.
Solving the above two equations yields the expressions for qmn and rmn: These are then substituted into

Eqs. (28) and (29) to obtain �u1;1 and �u2;2, and subsequently into Eq. (14). After much manipulation, the
e�ective compression modulus can be expressed as

Ec � E � E
96m2

1ÿ m2

ab
t2

X1
m�1

X1
n�1

1

�
� t2

12ab
a2

mX
ÿ � b2

nX
ÿ1
�� 1

a2
mb2

nFmn

; �36�

where

Fmn � t2

6ab
2a2

mb2
n

� � �1ÿ m� a4
mX2

ÿ � b4
nX
ÿ2
��� 12ab

t2

1ÿ 2m
1ÿ m

� 3ÿ 4m
1ÿ m

a2
mX

ÿ � b2
nX
ÿ1
�
:

When m � 0, the second term in Eq. (36) vanishes and the solution recovers correctly to Young's
modulus. The above solution involves no trigonometric function, hyperbolic function or any special
function (e.g. Bessel function) as encountered in most other solutions for this type of problem. The series
approach can be easily implemented in a computer program or spreadsheet. The term ab=t2 appears in
several places in the above equation and may be a more natural term than the usual de®nition of shape
factor S to measure the extent of constraint in lateral expansion. This term can be expressed in terms of the
two geometric parameters S and X, noting that a=t � S�1� Xÿ1� and b=t � S�1� X�: Note also that the
solution for a particular value of X is the same as that for 1=X (irrespective of whether b is the longer or
shorter side).
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4. Numerical results and discussion

In order to (partially) verify the proposed method, three special cases are considered: a square layer, an
elongated layer which may be idealized as an in®nite strip, and a rectangular layer of aspect ratio equal to 2.
In each case, two shape factors are studied: S � 5 and 20. For the proposed method, the series solution is
computed for terms up to m � n � 10 (more than su�cient for the series convergence). The e�ective
compression modulus is sensitive to the value of PoissonÕs ratio when the value is near 0.5. As adopted in
previous works (Koh and Kelly, 1989; Tsai and Lee, 1998), the term log 1= 1ÿ 2m� �� �, rather than m itself, is
a better measure of the ``closeness'' to strict incompressibility. Thus, the e�ective compression modulus
(normalized with YoungÕs modulus) is plotted versus this term.

4.1. Square layer

The present solution is obtained for X � 1 and compared with the square-layer solution by Koh and
Kelly (1989). As shown in Fig. 2, the present solution virtually coincides with the Koh±Kelly solution.

4.2. Elongated layer

The present solution is obtained for a very large aspect ratio of X � 50 or, conversely, a very small value
of 0.02. This is compared with the solution for the idealized in®nite-strip (Tsai and Lee, 1998). Again, the
agreement is found to be very good as shown in Fig. 3.

4.3. Rectangular layer of aspect ratio 2:1

A rectangular layer of X � 2 (or 0.5) is considered. Since no closed form solution is available, numerical
results are obtained by means of the ®nite element method using a software called SAP2000SAP2000 (SAP2000SAP2000, 1997).
The layer is modelled as three sub-layers, each having 30 eight-node solid elements with incompatible
bending modes. The ®nite element solution for the e�ective compression modulus is slightly larger than the

Fig. 2. E�ective compression modulus for square layer (b=a � 1).
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present solution (Fig. 4). This is not unexpected, as the ®nite element method tends to overestimate the
sti�ness in general.

4.4. E�ects of aspect ratio

The present method is used to study the e�ects of aspect ratio. Let ESQ
c denote the e�ective compression

modulus for a square layer. The ratio of the e�ective compression modulus of the rectangular layer to ESQ
c is

presented for the full range of X (from nearly zero to one) in Figs. 5 and 6 for S � 5 and 20, respectively.
The e�ective compression modulus for a rectangular layer (X 6� 1) is always smaller than that for a square
layer with the same shape factor. The reduction in Ec is signi®cant for PoissonÕs ratio larger than 0.49 and
can be as high as about 40% for m near 0.5.

Fig. 3. E�ective compression modulus for rectangular layer with b=a � 50 (or 0.02).

Fig. 4. E�ective compression modulus for rectangular layer with b=a � 2 (or 0.5).
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4.5. Convergence of series solution

Finally, the convergence of the series solution is studied. Let E�m;n�c denote the solution computed using
up to �m; n� terms. As the e�ect of aspect ratio is signi®cant when PoissonÕs ratio is near 0.5, two such values
are considered: m � 0:49 and 0.4999. As for the aspect ratio, X � 2 and 20 are considered. The ratio of E�1;1�c

(i.e. using only the ®rst term of the series) to E�10;10�
c (taken as the converged solution) is plotted in Fig. 7(a)

for a very wide range of shape factor from 0.1 to 100. It is seen that the ratio E�1;1�c =E�10;10�
c may drop to 0.7,

when the shape factor is very large. The practical values of shape factor are normally between 1 and 10. For
this range, the error incurred by using only the ®rst term of the series may be up to 20%.

Fig. 5. Ratio of e�ective compression moduli for rectangular layer and square layer, for S � 5.

Fig. 6. Ratio of e�ective compression moduli for rectangular layer and square layer, for S � 20.
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The series solution computed using terms up to m � n � 2, i.e. E�2;2�c , is very close to the converged
solution as illustrated in Fig. 7(b). The error incurred is up to about 5% for shape factors between 1 and 10.
For m near 0.5, the single series solution for square layers (Koh and Kelly, 1989; Tsai and Lee, 1998) has
roughly fourth-order convergence and thus the ®rst term alone gives a very accurate solution. In the double
series solution, which is needed here for rectangular layers, the (o�-diagonal) term of m � 2 and n � 1 is of
second order as compared to the ®rst term of m � n � 1; similarly for the term of n � 2 and m � 1. Hence,
it is generally necessary to include the ®rst three terms that contain m � 1 and/or n � 1.

5. Conclusions

On the assumptions that horizontal plane sections remain plane and vertical lines become parabolic
under vertical compression, the analytical solution for the e�ective compression modulus has been derived
for bonded rectangular layers. In particular, the QR-transformation permits a closed form solution. The
governing equations are then solved by the double series approach, taking advantage of symmetry about
the x1 and x2 axes. The solution as given by Eq. (36) does not require any mathematical function and is an
algebraic function of three parameters, namely PoissonÕs ratio, the shape factor and the aspect ratio. This

Fig. 7. Convergence of double series solution for rectangular layers.
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approach provides a direct means for computation of the e�ective compression modulus. It is much easier
to implement than numerical methods such as the ®nite element method, particularly for parametric study.

The solutions for square layer and in®nite strip are special cases of the present solution with the aspect
ratio equal to, respectively, unity and an extreme value. Virtually identical results are obtained by the
present method as compared to published results for the entire range of PoissonÕs ratio. For a rectangular
layer of 2:1 aspect ratio, the present solution is in good agreement with the ®nite element solution. Con-
sistent with previous ®ndings, the results show that the assumption of strict incompressibility (m � 0:5)
over-estimates Ec considerably when PoissonÕs ratio is in fact not 0.5, though close enough.

Parametric studies show that, for given values of shape factor and PoissonÕs ratio, Ec decreases with the
extent of ``elongation'' (deviation of length from width). The e�ect of aspect ratio on Ec is more pronounced
as PoissonÕs ratio is near 0.5, and the reduction can be as much as about 40%. The series solution exhibits
second-order convergence in both m and n indices. It may therefore be necessary to use more than just the
®rst term; terms up to m� n� 2 are recommended for practical use.
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