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Abstract

It is well known that the compression stiffness of bonded layers increases due to the restricted lateral expansion if
Poisson’s ratio is near 0.5. While analytical solutions have previously been obtained for circular, infinite-strip and
square shapes, this paper presents the first analytical attempt for bonded rectangular layers. On the basis of two ki-
nematic assumptions and by means of variable transformation, the governing equations are derived. The double series
approach provides a direct means of computation with second-order convergence. The solutions agree well with the
published results for special cases of square layers and infinite strips, and with finite element results for rectangular
layers. Besides illustrating the importance of including the compressibility effect, the numerical study shows that the
effect of length-to-width ratio is significant on the effective compression modulus of rectangular pads. © 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Elastomeric pads and bearings are commonly used for the purpose of vibration isolation. Usually made
of natural or synthetic rubbers, they could be used at the vibration “source’ such as machineries to reduce
the vibrations transmitted to the supporting structures. Alternatively, they could be installed at the “target”
e.g. to protect sensitive instruments in a noisy factory environment using thin elastomeric pads. For the
same reason, it is possible to use rubber bearings at the base of buildings and structures alike to reduce
traffic-induced vibration. The first building to be isolated from low frequency ground-borne traffic vibra-
tion by means of natural rubber bearings was an apartment built in London in 1966 (Kelly, 1997). In recent
years, the concept of using base isolation bearings for earthquake resistant design of buildings and bridges
has been increasingly accepted. The aim is to reduce the forces transmitted to the structures in the event of
earthquakes. Such bearings typically consist of several thin rubber layers sandwiched between and bonded
to steel reinforcing plates.
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Under vertical compression, the expansion of bonded rubber layers is confined in only lateral directions.
As rubber is highly incompressible (Poisson’s ratio v close to 0.5), the restricted expansion results in higher
compression modulus than in the case of unbonded rubber layers. The effective compression modulus can
be defined as

P
E.=—, 1
Ag, (1)

where A is the area of the pad, ¢ the thickness, and ¢, the average thickness strain (or relative change in
thickness) under a compression load P. The value of E, is larger than Young’s modulus (E) of the material
by even one or two orders of magnitude, depending upon the shape factor and Poisson’s ratio. The shape
factor is defined as the ratio of the loaded area to the stress-free area (where lateral expansion takes place).
Earlier works assumed strict incompressibility, i.e. v is exactly equal to 0.5. On this basis, Gent and Lindley
(1959) derived the effective compression modulus for pads of two types of geometry, i.e. circular pads and
infinitely long pads. In addition, the following assumptions were made (two on kinematics and one on
stress):

(A) horizontal plane sections remain plane,

(B) vertical lines become parabolic after deformation under compression loading (parabolic “bulging”

shape),

(C) normal stress components in all the three orthogonal directions are the same and equal to the mean

pressure.

This approximate treatment was further extended by Lindley (1966) and Gent and Meinecke (1970) to
pads of other shapes including ellipse, square, rectangle and equilateral triangle. Nevertheless, for pads of
high shape factor, the assumption of strict incompressibility for material overestimates the effective com-
pression modulus considerably. This is not desirable as it leads to the over-estimation of the buckling load
and resonant frequency. Even though the numerical value of Poisson’s ratio may be very close to 0.5, the
effect of material compressibility cannot be neglected. In an energy approach, Lindley (1979) derived the
compression moduli for elastic blocks bonded to rigid end plates for plane strain (infinitely long strip) and
axisymmetric (circular) cases. In addition to assumptions (A) and (B) mentioned above, two assumptions
were made regarding the magnitudes of normal strains and the bulk strain. This approach was found to be
applicable for materials with Poisson’s ratio between 0.125 and 0.49983 and the width-to-thickness ratio
between 0.25 and 128. In a similar investigation, Moghe and Neff (1971) derived the effective compression
modulus for constrained elastic cylinders in terms of infinite series of orthogonal Bessel and trigonometric
functions.

Accounting for the effect of compressibility, Chalhoub and Kelly (1990) formulated a theoretical ap-
proach to derive the compression stiffness of circular layers used in rubber isolation bearings. Based on
assumptions (A)—(C), the governing equations for the “hydrostatic pressure” in a bonded rubber layer were
presented. Known as the “pressure’ solution, the approach was extended to treat infinite strips (Chalhoub
and Kelly, 1991), hollow circular pads (Constantinou et al., 1992) and square pads (Kelly, 1997).

In the pressure solution approach, it is necessary to assume that the state of stress at any point in the
material behaves like fluid, and hence the governing equation can be expressed in terms of the hydrostatic
pressure term. This is a rather ad hoc assumption. Without making this assumption, Koh and Kelly (1989)
proposed two direct solutions to compute the effective compression modulus of bonded square elastomeric
layers. The first direct solution is based on the two kinematic assumptions (A) and (B). It is noteworthy that
the solution method takes advantage of the so-called square symmetry (about diagonals). This solution is
almost indistinguishable numerically from the second direct solution that further eliminates kinematic
assumption (B), thereby confirming that the assumption of parabolic bulging shape is a realistic one. The
error due to the remaining assumption (A) is also shown to be negligible for typical shape factors. Both
direct solutions recover the effective compression modulus to Young’s modulus when Poisson’s ratio
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approaches zero. In contrast, the pressure solution fails to do so and is thus applicable to only a limited
range of Poisson’s ratio. In a similar attempt without assuming fluid-like stress state, Tsai and Lee (1998)
recently obtained closed form solutions for bonded layers of infinite-strip, circular and square shapes. For
square layers, square symmetry is made use of as in the solution presented by Koh and Kelly (1989). The
solution also involves an infinite series, though in a more complicated form requiring the solution of a
matrix equation. The rapid convergence of the series solution gives good accuracy with the use of only one
term. The numerical results compare well with the results given by Koh and Kelly (1989).

Rectangular pads are not uncommon for isolation support of machines and railway tracks. Nevertheless,
no analytical solution thus far has been presented taking into account the effect of compressibility. This is in
fact the main reason why solutions have been obtained for infinite-strip layers as an approximation for long
rectangular layers. In this paper, the approach similar to the first direct solution of Koh and Kelly (1989) is
adopted, but without the benefit of square symmetry.

2. Theoretical formulation

Consider a rectangular layer bonded between two rigid plates and subjected to a vertical compression
load, P. The layer is of thickness ¢, width 2« and length 2. The material is assumed to be linearly elastic,
homogenous and isotropic. A Cartesian coordinate system (xj, X», x3) is established with the origin at the
center of the mid-plane as shown in Fig. 1.

Let u; denote the displacement component in the x; direction. The top and bottom surfaces of the layer
are perfectly bonded to rigid plates so that u; = u, = 0 at x; = +¢/2. Following the usual definition, the

shape factor for a bonded rectangular layer is
ab
S=—"" 2
t(a+b) )

Kinematic assumptions (A) and (B), which are found to be reasonable in the study for square layers (Koh
and Kelly 1989), are adopted here. Accordingly, the displacements can be expressed as follows:

u;(xy, x0,x3) = #;(x1,x2) (1 — 4x§/t2) fori=1,2, (3)

u3(x1,X2,x3) = 3(x3). (4)

Using the usual tensor notations for stress (o;;) and strain (g;), the constitutive equation and strain—
displacement relation are, respectively,

2a

X2

Rectangular layer

il

‘(’(lzb

<&

Fig. 1. Geometry and co-ordinate system for a rectangular layer bonded between two rigid plates.
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gjj = /lSkkélj + 2,[181:/', (5)

&y = 5+ upi), (6)

where 0;; is the Kronecker delta function, u is the same as the shear modulus G, and 1 = vE/[(1 +v) x
(I = 2v)]. It can be shown that

o= |:(/L + 2G)17{1,1 + )lezzi| (1 - 4X§/[2) —+ /11/7{3,37 (7)
[ |:(/L + 2G)Ijl272 + )ftm} (1 — 4X§/l‘2> + /112337 (8)
033 = (l + 2G)ﬁ3_’3 + /l(lj]_yl + az‘z) (1 — 4)(%/12), (9)
o3 =031 = —8GL71X3/t2, (10)
03 = 03 = 78GL_12X3/1‘2, (11)
_ — — 2742
612—G(u1,2+u2‘1)(1—4x3/t). (12)
The compression load P is obtained by integrating gs; over the mid-plane, leading to
2
P = —(i+2G)ditys — A(l —4%) /(al,l +din0)dA. (13)
A

Integrating the above equation over the thickness and substituting the result into Eq. (1) results in

B

2
E.= 2G) (1 -2
(A+ G)[ )

(171,1 + ﬂzﬁz)dA:| , (14)

where /. = A/( +2G) = v/(1 —v). To evaluate u;,; and u,,, as required above, the following equilibrium
equation is invoked:
Substituting Eqgs. (10) and (12) into the above equation with i =1, differentiating the resulting equation with
respect to x; and finally integrating through the thickness leads to
8Gu 2
o111 =t—2u—§G(ﬁlﬁ,122+ﬁzﬁ211)- (16)

An alternative expression can be obtained by differentiating Eq. (7) twice with respect to x; and integrating
through the thickness

a1 :§ (A+2G)uy 111 + Atz |- (17)
Equating the above two expressions and dividing by (4 + 2G) gives

12Giiy 1 /£ = urn + (A+ Q)i o + Gily 122, (18)
where G = G/(4+2G) = (1 —2v)/2/(1 —v). Similarly, for i= 2 in Eq. (15),

12él?z.,z/l‘2 =Upon + (A+ G)iiy 122 + Gilp 11 - (19)



C.G. Koh, H.L. Lim | International Journal of Solids and Structures 38 (2001) 445-455 449

Eqs. (18) and (19) provide the governing equations for solving u#;; and #,,. The corresponding
boundary conditions are derived by imposing stress-free condition along the four lateral sides:

o (x1==%a,x)=0 (20)

022 (X1,X2 = :I:b) =0. (21)

Substituting Egs. (7) and (8) into Egs. (20) and (21), respectively, and integrating both resulting equations
through the thickness results in

1/7111 + Zﬁz,z = %/TS, at x; = :I:a, (22)

i + Zﬂm = %Zat at x, = +b. (23)

The above boundary conditions can be made simpler by using the following “QR-transformation” (Koh
and Kelly, 1989):

O(x1,x2) = ity 1 (x1,%2) + Adla(x1,x2) — %an (24)

R(xy,x2) = 2 (x1,%2) + Aty 1 (x1,%2) — 3Aé. (25)
Hence,

O(x; = £a,x;) =0, (26)

R()Cl,XQ = :l:b) =0. (27)

Solving simultaneously Egs. (24) and (25) gives the inverse transformation:

O—-J/R 3 1

U = 1 — /Thz 5 1 +//TLS” (28)

_ R—10 3 A

Uyr = 1 — /"? 5 1 —’—/"Iét. (29)
Egs. (18) and (19) thus become

ab <C3Q711 + GQQZ + GR,“ — ;_LGRQZ) = C] (Q — )_»R) + Cr&4, (30)

ab <C3R,22 +GR 1 + GOy — ZGQJI) = c1(R — 7.0) + cr8, (31)

where ¢; = 12G(ab/t?), ¢; = (3/2)c14(1 — A) and ¢; = 1 — A(A + G).

3. Series solution

As shown for square layers (Koh and Kelly, 1989; Tsai and Lee, 1998), the series approach provides a
closed form solution to the problem and its rapid numerical convergence is an advantage. Square sym-
metry, e.g. i1 (x1,Xx2) = #i2(x2,x1), is not valid here for rectangular layers. Thus, it is necessary to use double
Fourier series instead of a single series.

By virtue of symmetry about the x; and x, axes, it follows that #;; and u,, are symmetric functions of
both x; and x,. Hence, only cosine functions are needed in the double series expressions for Q and R, as
follows:
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x17x2 ZZan Cos 0(mxl/a) Cos (ﬁnXZ/b) (32)
m=1 n=1

R(x1,x) = ZZF”’” cos (a,x1 /a) cos(B,x2/b), (33)
m=1 n=1

where «,, = (m — 0.5)n and f§, = (n — 0.5)n. Egs. (26) and (27), which result from imposing the boundary
conditions as given in Egs. (20) and (21), are satisfied by the above construction. Note that Eq. (32) also
means Q(x;,x, = £b) = 0. Nevertheless, this does not necessarily imply that oy (x;,x, = £b) = 0 since the
construction of Q from Eq. (20) involves integration through the thickness. An analogy is that
f(x) =0= [ f(x)dx =0, but the converse may not be necessarily true. In the context of the present for-
mulation and assumptions, the only implication is that the integral of oy, at x, = +b through the thickness
is zero; similarly for oy, at x; = +a.

The coefficients ¢,,, and r,, are derived by (i) differentiating the above two equations twice with respect
to x; and x,, (ii) substituting into Egs. (30) and (31), and (iii) applying the orthogonality properties of
cosine functions. After some simplification, the following expressions are obtained:

Amn qmn + an rmn - E”"’l b (34)
Cmnrmn J’_ Dmnqmn - Ean (35)
where

Ay = —cwiQ - GﬁiQfl —c¢, Bu= —Goc,an + )TGﬁiQil + 1,
Com = =322 = G2Q —¢i, Dy =GR + 1G22+ ¢,
4(—1)""cye,

%3,

and Q = b/a is the ratio of length to width, herein called the aspect ratio.

Solving the above two equations yields the expressions for ¢,, and r,, These are then substituted into
Egs. (28) and (29) to obtain u;; and u,,, and subsequently into Eq. (14). After much manipulation, the
effective compression modulus can be expressed as

Emn =

96V 0 1
B P 3D [ g (R ) o (36)
where
_ T b R Tt L
F;’m_6 b[z ﬁ +( )(OCmQ +ﬁ"Q )]+ 2 1_V+ 1—v (an7Q+ﬁnQ )

When v =0, the second term in Eq. (36) vanishes and the solution recovers correctly to Young’s
modulus. The above solution involves no trigonometric function, hyperbolic function or any special
function (e.g. Bessel function) as encountered in most other solutions for this type of problem. The series
approach can be easily implemented in a computer program or spreadsheet. The term ab/¢* appears in
several places in the above equation and may be a more natural term than the usual definition of shape
factor S to measure the extent of constraint in lateral expansion. This term can be expressed in terms of the
two geometric parameters S and Q, noting that a/t = S(1 + Q') and b/t = S(1 + Q). Note also that the
solution for a particular value of Q is the same as that for 1/Q (irrespective of whether b is the longer or
shorter side).
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4. Numerical results and discussion

In order to (partially) verify the proposed method, three special cases are considered: a square layer, an
elongated layer which may be idealized as an infinite strip, and a rectangular layer of aspect ratio equal to 2.
In each case, two shape factors are studied: S = 5 and 20. For the proposed method, the series solution is
computed for terms up to m =n =10 (more than sufficient for the series convergence). The effective
compression modulus is sensitive to the value of Poisson’s ratio when the value is near 0.5. As adopted in
previous works (Koh and Kelly, 1989; Tsai and Lee, 1998), the term log(1/(1 — 2v)), rather than v itself, is
a better measure of the “closeness” to strict incompressibility. Thus, the effective compression modulus
(normalized with Young’s modulus) is plotted versus this term.

4.1. Square layer

The present solution is obtained for 2 = 1 and compared with the square-layer solution by Koh and
Kelly (1989). As shown in Fig. 2, the present solution virtually coincides with the Koh—Kelly solution.

4.2. Elongated layer

The present solution is obtained for a very large aspect ratio of Q = 50 or, conversely, a very small value
of 0.02. This is compared with the solution for the idealized infinite-strip (Tsai and Lee, 1998). Again, the
agreement is found to be very good as shown in Fig. 3.

4.3. Rectangular layer of aspect ratio 2:1

A rectangular layer of Q = 2 (or 0.5) is considered. Since no closed form solution is available, numerical
results are obtained by means of the finite element method using a software called SAP2000 (sAP2000, 1997).
The layer is modelled as three sub-layers, each having 30 eight-node solid elements with incompatible
bending modes. The finite element solution for the effective compression modulus is slightly larger than the

1000 1

1 ——Present Solution
1 Points: Koh and Kelly (1989)
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lo !
& 1—2v

Fig. 2. Effective compression modulus for square layer (b/a = 1).
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Fig. 3. Effective compression modulus for rectangular layer with 5/a = 50 (or 0.02).
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Fig. 4. Effective compression modulus for rectangular layer with b/a =2 (or 0.5).

present solution (Fig. 4). This is not unexpected, as the finite element method tends to overestimate the

stiffness in general.

4.4. Effects of aspect ratio

The present method is used to study the effects of aspect ratio. Let E5? denote the effective compression
modulus for a square layer. The ratio of the effective compression modulus of the rectangular layer to ESQ is
presented for the full range of Q (from nearly zero to one) in Figs. 5 and 6 for S = 5 and 20, respectively.
The effective compression modulus for a rectangular layer (Q # 1) is always smaller than that for a square
layer with the same shape factor. The reduction in E. is significant for Poisson’s ratio larger than 0.49 and

can be as high as about 40% for v near 0.5.

log L
& 1—2v
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Poisson’s ratio

-/0'49-’—"

Aspect ratio (b/a)

Fig. 5. Ratio of effective compression moduli for rectangular layer and square layer, for § = 5.

Poisson’s ratio
0.49

Aspect ratio (b/a)

Fig. 6. Ratio of effective compression moduli for rectangular layer and square layer, for S = 20.

4.5. Convergence of series solution

Finally, the convergence of the series solution is studied. Let £ denote the solution computed using
up to (m, n) terms. As the effect of aspect ratio is significant when Poisson’s ratio is near 0.5, two such values
are considered: v = 0.49 and 0.4999. As for the aspect ratio, Q = 2 and 20 are considered. The ratio of E{":V
(i.e. using only the first term of the series) to E{*!¥ (taken as the converged solution) is plotted in Fig. 7(a)
for a very wide range of shape factor from 0.1 to 100. It is seen that the ratio £V /E(1*19 may drop to 0.7,
when the shape factor is very large. The practical values of shape factor are normally between 1 and 10. For
this range, the error incurred by using only the first term of the series may be up to 20%.
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Fig. 7. Convergence of double series solution for rectangular layers.

The series solution computed using terms up to m =n =2, i.e. E>?, is very close to the converged
solution as illustrated in Fig. 7(b). The error incurred is up to about 5% for shape factors between 1 and 10.
For v near 0.5, the single series solution for square layers (Koh and Kelly, 1989; Tsai and Lee, 1998) has
roughly fourth-order convergence and thus the first term alone gives a very accurate solution. In the double
series solution, which is needed here for rectangular layers, the (off-diagonal) term of m =2 and n = 1 is of
second order as compared to the first term of m = n = 1; similarly for the term of » = 2 and m = 1. Hence,
it is generally necessary to include the first three terms that contain m = 1 and/or n = 1.

5. Conclusions

On the assumptions that horizontal plane sections remain plane and vertical lines become parabolic
under vertical compression, the analytical solution for the effective compression modulus has been derived
for bonded rectangular layers. In particular, the QR-transformation permits a closed form solution. The
governing equations are then solved by the double series approach, taking advantage of symmetry about
the x; and x, axes. The solution as given by Eq. (36) does not require any mathematical function and is an
algebraic function of three parameters, namely Poisson’s ratio, the shape factor and the aspect ratio. This
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approach provides a direct means for computation of the effective compression modulus. It is much easier
to implement than numerical methods such as the finite element method, particularly for parametric study.

The solutions for square layer and infinite strip are special cases of the present solution with the aspect
ratio equal to, respectively, unity and an extreme value. Virtually identical results are obtained by the
present method as compared to published results for the entire range of Poisson’s ratio. For a rectangular
layer of 2:1 aspect ratio, the present solution is in good agreement with the finite element solution. Con-
sistent with previous findings, the results show that the assumption of strict incompressibility (v = 0.5)
over-estimates E, considerably when Poisson’s ratio is in fact not 0.5, though close enough.

Parametric studies show that, for given values of shape factor and Poisson’s ratio, E. decreases with the
extent of “‘elongation” (deviation of length from width). The effect of aspect ratio on E. is more pronounced
as Poisson’s ratio is near 0.5, and the reduction can be as much as about 40%. The series solution exhibits
second-order convergence in both m and » indices. It may therefore be necessary to use more than just the
first term; terms up to m=n=2 are recommended for practical use.
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